

## DPP - 1 (Magnetism \& Matter)

## Video Solution on Website:-

## Video Solution on YouTube:-

## Written Solution on Website:-

## https://youtu.be/DLSw1mutOl8

https://physicsaholics.com/note/notesDetalis/56

Q 1. A magnetic wire of dipole moment $4 \pi A m^{2}$ is bent in the form of semicircle. The new magnetic moment is:
(a) $4 \pi A m^{2}$
(b) $8 \pi A m^{2}$
(c) $4 \mathrm{Am}^{2}$
(d) $8 \mathrm{Am}^{2}$

Q 2. A magnet of magnetic moment $M$ and pole strength $m$ is divided in two equal parts, then magnetic moment of each part will be
(a) M
(b) $\mathrm{M} / 2$
(c) $\mathrm{M} / 4$
(d) 2 M

Q 3. Magnetic induction due to a short bar magnet on its axial line (at a distance ' $r$ ') is inversely proportional to
(a) $r^{3}$
(b) $\frac{1}{r^{3}}$
(c) $r^{2}$
(d) $\frac{1}{r^{2}}$

Q 4. Points $A$ and $B$ are situated along the extended axis of 2 cm long bar magnet at a distance $x$ and $2 \times \mathrm{cm}$ respectively. From the pole nearer to the points, the ratio of the magnetic field at A and B will be
(a) $4: 1$ exactly
(b) $4: 1$ approx.
(c) $8: 1$ exactly
(d) $8: 1$ approx.

Q 5. A very long bar magnet (length $L$ ) has a pole strength of $10 \mathrm{~A}-\mathrm{m}$. Find the magnetic field at a point on the axis of the magnet at a distance of 5 cm from the north pole of the magnet ( $L \ggg 5 \mathrm{~cm}$ )
(a) $4 \times 10^{-4} \mathrm{~T}$
(b) $8 \times 10^{-4} \mathrm{~T}$
(c) $4 \times 10^{-6} \mathrm{~T}$
(d) $8 \times 10^{-8} \mathrm{~T}$

Q 6. Calculate the magnetic field due to a bar magnet 2 cm long and having pole strength of $100 \mathrm{~A}-\mathrm{m}$ at a point 10 cm from each pole on the equatorial line
(a) $2 \times 10^{-2} \mathrm{~T}$
(b) $3 \times 10^{-3} \mathrm{~T}$
(c) $2 \times 10^{-4} \mathrm{~T}$
(d) $5 \times 10^{-6} \mathrm{~T}$

Q 7. A bar magnet is 0.10 m long and its pole strength is 120 Am . Find magnitude of magnetic field at a point on its axis at a distance 20 cm from its center
(a) $6.8 \times 10^{-5} \mathrm{~T}$
(b) $3.4 \times 10^{-4} \mathrm{~T}$
(c) $2.1 \times 10^{-4} \mathrm{~T}$
(d) $5.2 \times 10^{-6} \mathrm{~T}$


Q 8. The magnetic potential at a point on the axial line of a bar magnet of dipole moment M is V . What is the magnetic potential due to a bar magnet of dipole moment $\frac{M}{4}$ at the same distant axial point?
(a) 4 V
(b) 2 V
(c) $V / 2$
(d) V/4

Q 9. The pole strength of a bar magnet is 48 ampere-meter and the distance between its poles is 25 cm . The moment of the couple by which it can be placed at an angle of $30^{\circ}$ with the uniform magnetic intensity of flux density 0.15 Newton/ampere-meter will be
(a) 12 Newton $\times$ metre
(b) 18 Newton $\times$ metre
(c) 0.9 Newton $\times$ metre
(d) None of the above

Q 10. The work done in rotating a magnet of magnetic moment $2 \mathrm{Am}^{2}$ in a magnetic field $5 \times 10^{-3} \mathrm{~T}$ from the direction along the magnetic field to opposite direction to the magnetic field, is
(a) zero
(b) $2 \times 10^{-2} \mathrm{~J}$
(c) $10^{-2} \mathrm{~J}$
(d) 10 J

Q 11. Magnetic moment of bar magnet is $M$. The magnitude of work done to turn the magnet by $90^{\circ}$ of magnet in direction of magnetic field $B$ will be
(a) zero
(b) $\frac{M B}{2}$
(c) $M B$
(d) $2 M B$

Q 12. Find the magnetic field due to a dipole of magnetic moment $1.2 \mathrm{Am}^{2}$ at a point 1 m away from it in a direction making an angle of $60^{\circ}$ with the dipole-
(a) $2 \times 10^{-6} \mathrm{~T}$
(b) $3.2 \times 10^{-6} \mathrm{~T}$
(c) $4 \times 10^{-7} \mathrm{~T}$
(d) $1.6 \times 10^{-7} T$

Q 13. The magnitude of magnetic field, due to a dipole of magnetic moment $2.4 \mathrm{Am}^{2}$, at a point 200 cm away from it in the direction making an angle of $90^{\circ}$ with the dipole axis is
(a) $3 \times 10^{-6} \mathrm{~T}$
(b) $3 \times 10^{-7} \mathrm{~T}$
(c) $3 \times 10^{-8} \mathrm{~T}$
(d) $0.3 \times 10^{-8} \mathrm{~T}$

Q 14. Two small bar magnets are placed in a line with like poles facing each other at a certain distance $d$ ( $d \gg$ length of magnets) apart. If the length of each magnet is negligible as compared to d , the force between them will be inversely proportional to
(a) $d$
(b) $d^{2}$
(c) $d^{4}$
(d) $\frac{1}{d^{2}}$

Q 15. A long magnet is cut in two parts in such a way that the ratio of their lengths is $2: 1$. The ratio of pole strengths of both the section is
(a) In the ratio of $1: 1$
(b) In the ratio of $2: 1$
(c) In the ratio of $1: 2$
(d) In the ratio of $4: 1$

Q 16. A magnet of magnetic moment $50 \hat{\imath} \mathrm{Am}^{2}$ is placed along the x -axis in a magnetic field $\vec{B}=(0.5 \hat{\imath}+3.0 \hat{\jmath}) \mathrm{T}$. The torque acting on the magnet is
(a) $175 \hat{k} \mathrm{~N}-\mathrm{m}$
(b) $150 \hat{k} \mathrm{~N}-\mathrm{m}$
(c) $75 \hat{k} \mathrm{~N}-\mathrm{m}$
(d) $25 \hat{k} \mathrm{~N}-\mathrm{m}$

## Answer Key



