

/74

$DPP-1 \ (Magnetism \ \& \ Matter)$

Video Solution on Website:-	https://physicsaholics.com	/home/courseDetails
-----------------------------	----------------------------	---------------------

Video Solution on YouTube:- https://youtu.be/DLSw1mutOl8

Written Solution on Website:- https://physicsaholics.com/note/notesDetalis/56

- Q 1. A magnetic wire of dipole moment 4π Am^2 is bent in the form of semicircle. The new magnetic moment is:
 - (a) $4\pi Am^2$

(b) $8\pi Am^2$

(c) $4 Am^2$

- (d) $8 Am^2$
- Q 2. A magnet of magnetic moment M and pole strength m is divided in two equal parts, then magnetic moment of each part will be
 - (a) M

(b) M/2

(c) M/4

- (d) 2M
- Q 3. Magnetic induction due to a short bar magnet on its axial line (at a distance 'r') is inversely proportional to
 - (a) r^{3}

 $(b)\frac{1}{r}$

(c) r^2

- (d) $\frac{1}{r^2}$
- Q 4. Points A and B are situated along the extended axis of 2 cm long bar magnet at a distance x and 2x cm respectively. From the pole nearer to the points, the ratio of the magnetic field at A and B will be
 - (a) 4:1 exactly

(b) 4 : 1 approx.

(c) 8 : 1 exactly

- (d) 8 : 1 approx.
- Q 5. A very long bar magnet (length L) has a pole strength of 10A-m. Find the magnetic field at a point on the axis of the magnet at a distance of 5cm from the north pole of the magnet (L >>> 5cm)
 - (a) 4×10^{-4} T
- (b) $8 \times 10^{-4} \text{ T}$
- (c) 4×10^{-6} T
- (d) 8×10^{-8} T
- Q 6. Calculate the magnetic field due to a bar magnet 2cm long and having pole strength of 100 A-m at a point 10 cm from each pole on the equatorial line
 - (a) 2×10^{-2} T
- (b) $3 \times 10^{-3} \text{ T}$
- (c) $2 \times 10^{-4} \text{ T}$
- (d) 5×10^{-6} T
- Q 7. A bar magnet is 0.10 m long and its pole strength is 120 Am. Find magnitude of magnetic field at a point on its axis at a distance 20 cm from its center
 - (a) 6.8×10^{-5} T

(b) 3.4×10^{-4} T

(c) 2.1×10^{-4} T

(d) 5.2×10^{-6} T

hysicsaholics

Q 8.	The magnetic potential at a point on the axial line of a bar magnet of dipole moment M
	is V. What is the magnetic potential due to a bar magnet of dipole moment $\frac{M}{4}$ at the
	same distant axial point?

(a) 4V

(b) 2V

(c) V/2

(d) V/4

Q 9. The pole strength of a bar magnet is 48 ampere-meter and the distance between its poles is 25 cm. The moment of the couple by which it can be placed at an angle of 30° with the uniform magnetic intensity of flux density 0.15 Newton/ampere-meter will be

(a) 12 Newton × metre

(b) 18 Newton \times metre

(c) $0.9 \text{ Newton} \times \text{metre}$

(d) None of the above

Q 10. The work done in rotating a magnet of magnetic moment $2 Am^2$ in a magnetic field 5×10^{-3} T from the direction along the magnetic field to opposite direction to the magnetic field, is

(a) zero

(b) $2 \times 10^{-2} \text{ J}$

(c) 10^{-2} J

(d) 10 J

Q 11. Magnetic moment of bar magnet is M. The magnitude of work done to turn the magnet by 90° of magnet in direction of magnetic field B will be

(a) zero

(b) $\frac{MB}{2}$

(c) MB

(d) 2*MB*

Q 12. Find the magnetic field due to a dipole of magnetic moment 1.2 Am^2 at a point 1m away from it in a direction making an angle of 60° with the dipole-

(a)
$$2 \times 10^{-6}T$$

(b)
$$3.2 \times 10^{-67}$$

(c)
$$4 \times 10^{-7} T$$

(b)
$$3.2 \times 10^{-6}T$$

(d) $1.6 \times 10^{-7}T$

Q 13. The magnitude of magnetic field, due to a dipole of magnetic moment 2.4 Am^2 , at a point 200 cm away from it in the direction making an angle of 90° with the dipole axis

(a) 3×10^{-1}

(b) 3×10^{-7} T

(c) 3×10^{-8} T

(d) 0.3×10^{-8} T

Q 14. Two small bar magnets are placed in a line with like poles facing each other at a certain distance d (d >> length of magnets) apart. If the length of each magnet is negligible as compared to d, the force between them will be inversely proportional to

(a) *d*

(b) d^{2}

(c) d^4

(d) $\frac{1}{d^2}$

Q 15. A long magnet is cut in two parts in such a way that the ratio of their lengths is 2:1. The ratio of pole strengths of both the section is

(a) In the ratio of 1:1

(b) In the ratio of 2:1

(c) In the ratio of 1:2

(d) In the ratio of 4:1

P hysicsaholics

Q 16. A magnet of magnetic moment 50 $\hat{\imath}$ Am^2 is placed along the x-axis in a magnetic field $\vec{B} = (0.5 \hat{\imath} + 3.0 \hat{\jmath})$ T. The torque acting on the magnet is

(a) 175 \hat{k} N-m

(b) 150 \hat{k} N-m

(c) $75 \hat{k} \text{ N-m}$

(d) $25 \hat{k}$ N-m

Answer Key

Q.1 d	Q.2 b	Q.3 a	Q.4 d	Q.5 a
Q.6 c	Q.7 b	Q.8 d	Q.9 c	Q.10 b
Q.11 c	Q.12 d	Q.13 c	Q.14 c	Q.15 a
O 16 h		·	1	

Q.16 b